

## Performance Degrading in CPU/GPU, ASIC & FPGA

#### Performance



- Imperfect designs degrade performance of ICs, including CPU/GPU considerably.
- ASIC devices are built using older technology and suffering similar design degrading.
- FPGA internal structure causes extra performance degrading in addition to design degrading.
- Design modification in FPGA is easier so that design degrading can be minimized.

#### Introduction

- A 32-channel Wave Union TDC firmware has been implemented in an Altera Cyclone III FPGA device (EP3C25F324C6N, \$73.90) and has been tested on a Cyclone III evaluation card.
- Low-power design practice has been applied for applications in vacuum.
- Time measurement function is tested on 16 channels and typical delta t RMS resolution between two channels is 25-30 ps.
- Power consumption is measured for 32 channels at ~27 mW/channel.

# The Wave Union TDC Implemented in FPGA

#### TDC Using FPGA Logic Chain Delay



- This scheme uses current FPGA technology ©
- Low cost chip family can be used. (e.g. EP2C8T144C6 \$31.68) ③
- Fine TDC precision can be implemented in slow devices (e.g., 20 ps in a 400 MHz chip). ②

# Two Major Issues In a Free Operating FPGA





- 1. Widths of bins are different and varies with supply voltage and temperature.
- 2. Some bins are ultra-wide due to LAB boundary crossing



# Auto Calibration Using Histogram Method



# Good, However



- Auto calibration solved some problems ©
- However, it won't eliminate the ultra-wide bins ⊗



## Wave Union Launcher A: 2 Measurements/hit



# Sub-dividing Ultra-wide Bins



# Low-power Design Practices

# Low-Power Design Practice: Wave Union

- Intrinsically the Wave Union TDC is a lowpower scheme.
- Multiple measurements are made with one set of delay line, register encoder etc. yielding finer resolution that otherwise needs several regular TDC blocks to achieve.



# Low-Power Design Practice: Clock Speed



- The Sampling Register Arrays are clocked at 250 MHz.
- All other stages are clocked at 62.5 MHz.
- When a valid hit is sampled, the Sampling Register Array is disabled so that the registered pattern is stable for 64 ns.
- The Data Load/Transfer Registers are enabled to load input 64 ns, so that a valid hit is guaranteed to be load once and only once.

# Low Power Design Practice: Resource Sharing



## Block Diagram of 16 Channels



- The hit time for each of the 16 channel inputs is digitized and encoded.
- Data from 4 channels are buffered and data from 4 groups of 4 channels are merged together.
- Raw hit times are converted to fine time through automatic calibration block.
- Data from all 16 channels are buffered and sent out via 4 pairs of LVDS ports @250 M bits/s.

# **Test Results**

#### The Test Hardware





#### 2008

Altera Cyclone II + VME (~\$1k)

FPGA: EP2C8T144C6 (\$28.80)

16 channel: 25 ps

2 channel: 10 ps

81 mW/channel

Ref: Search "Wave Union TDC"

#### 2011

Altera Cyclone III Starter Kit (\$211+\$50)

FPGA: EP3C25F324C6N (\$73.90)

32 channel: 30 ps (25 ps with linear power supply)

27 mW/channel

## Test Setup



# Output Raw Data and Typical Delta T Histogram Between Two Channels

00003C C064A6 F064B8 C07CA4 F07CB4 C094A0 F094B0 C0AC9C F0ACAC C0C497 F0C4A8 C0DC91 F0DCA2



RMS of this histogram is 25 ps.





- TDC channels internally ganged together has smallest standard deviation of time differences.
- Typical channel pairs sharing same fan-out unit has 30 ps RMS.
- Timing jitters of the fan-out units add to the measurement errors.

#### Time Measurement Errors Due to Power Supply Noise



- Typical RMS resolution is 25-30 ps.
- Measurements with cleaner power (diamonds) is better than noisy power (squares).

# Specifications

| RMS Resolution (Delta T between two channels) | 25 to 30 ps              |
|-----------------------------------------------|--------------------------|
| Same channel re-hit time interval             | 64 ns                    |
| Temporary buffer capacity                     | 128 hits/(4 ch)/(16 us)  |
| LVDS output port rate:                        | 250 M bits/s/port        |
| Output capacity in each LDVS output port:     | 128 hits/(16 ch)/(16 us) |
| Number of LVDS output ports:                  | 1, 2, 3, 4/(16 ch)       |
| Power Consumption (Core only)                 | 9.3 mW/channel           |
| Power Consumption (Total)                     | 27 mW/channel            |
|                                               |                          |

Other Applications: Single Slope ADC



#### If You Want to Try



www.altera.com

DK-START-3C25N Cyclone III FPGA Starter Kit \$211



#### www.altera.com

THDB-H2G (HSMC to GPIO Daughter Board) \$50

- The FPGA on the Starter Kit is fairly powerful.
- More than 16 pairs LVDS I/O can be accessed via the daughter card.
- FPGA can fit 32 channels but implementing 16 channels is more practical given the I/O pairs.
- TDC data are stored in the RAM on the board and can be readout via USB.
- A good solution for small experiment systems as well as student labs.



# Timing Uncertainty Confinement

# Historical Implementation in ASIC TDC



#### Unnecessary Challenges = Extra Efforts + Reduced Performance

- Deadtime is unavoidable.
- Coarse time recording needs special care.
- Two array + encoder sets are needed for raising edge and falling edge.
- The register array must be reset for next event.
- The encoder must be re-synchronized with system clock in order to interface with readout stage.

# Unnecessary Challenges



- In history, Gray code counters, double counters and dual registers + MUX are found in ASIC TDC coarse time counter schemes.
- Theses are unnecessary if the TDC is designed appropriately.
- In FPGA, a plain binary counter is sufficient.



- Deadtimeless operation is possible.
- No special care is needed for coarse time.
- Both raising and falling edges are digitized with a single array + encoder set.
- No resetting is needed for the register array.
- The output is synchronized with the system clock and is ready to interface with readout stage.



# Comparison

| Historical Scheme:<br>HIT-> CK; (c0c31)->D;                                                     | Preferable Scheme:<br>HIT-> D; (c0c31)->CK;                                                    |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Deadtime is unavoidable.                                                                        | Deadtimeless operation is possible.                                                            |
| Coarse time recording needs special care.                                                       | No special care is needed for coarse time.                                                     |
| Two array + encoder sets are needed for raising edge and falling edge.                          | Both raising and falling edges are digitized with a single array + encoder set.                |
| The register array must be reset for next event.                                                | No resetting is needed for the register array.                                                 |
| The encoder must be re-synchronized with system clock in order to interface with readout stage. | The output is synchronized with the system clock and is ready to interface with readout stage. |

## More Measurements

- Two measurements are better than one.
- Let's try 16 measurements?

#### Wave Union Launcher B: 16 Measurements/hit



# **Delay Correction**



The raw data contains:

- U-Type Jumps:  $[48-63] \rightarrow [16-31]$
- V-Type Jumps: other small jumps.
- W-Type Jumps:  $[16-31] \rightarrow [48-63]$

#### **Delay Correction Process:**

- Raw hits TN(m) in bins are first calibrated into TM(m) in picoseconds.
- Jumps are compensated for in FPGA so that TM (m) become T0(m) which have a same value for each hit.
- Take average of T0(m) to get better resolution.

$$t_{0av} = \frac{1}{16} \sum_{m=0}^{15} t_0(m)$$

The processes are all done in FPGA.



#### A Preferable Scheme

DLL Clock Chain



- stage and the clock domain transfer stage: 17 clock taps.
- Setup time between the clock domain transfer stage and the encoder register: 32 or 16 clock taps.
- All outputs including TC are aligned with c0.
- Supports both raising and falling edges.

EG: Edge, =1: Raising or =0: Falling. T4..T0: Time.

DV: Data Valid, =1 Valid edge detected. It is used as PUSH signal for FIFO or Write Enable for other memory buffers.

# Low Power Design Practice: Clock Speed



#### Test Setup



Data from all 16 channels are buffered and sent out via 4 pairs of LVDS ports @250 M bits/s.

#### Test Setup



TDC + Encoder

- The hit time for each of the 16 channel inputs is digitized and encoded.
- Data from 4 channels are buffered and data from 4 groups of 4 channels are merged together.
- Raw hit times are converted to fine time through automatic calibration block.
- Data from all 16 channels are buffered and sent out via 4 pairs of LVDS ports @250 M bits/s.

# Wave Union Launcher B



### Cell Delay-Based TDC+ Wave Union Launcher



The wave union launcher creates multiple logic transitions after receiving a input logic step.

The wave union launchers can be classified into two types:

- Finite Step Response (FSR)
- Infinite Step Response (ISR)

This is similar as filter or other linear system classifications:

- Finite Impulse Response (FIR)
- Infinite Impulse Response (IIR)

# Wave Union?



Photograph: Qi Ji, 2010